
Unifying the City of Neighbourhoods 
 

1 

 

  

 

UNIFYING THE CITY OF 
NEIGHBOURHOODS: 

how ideas behind open source software development tools 
may benefit Toronto city government 

by 

Grant Patten 
g.patten@utoronto.ca 

Matthew Mandula 
matthew.mandula@utoronto.ca 

 

 

 

Second Draft 

INF 1004 

April 11, 2010 



Unifying the City of Neighbourhoods 
 

2 

 

Many of the shortcomings associated with municipal governments in Canada may be 

ameliorated through the careful consultation of an ostensibly unrelated area – open source 

software development. More specifically, this paper will show how the City of Toronto 

government could make policy development improvements in fairness, efficiency and 

communication if officials were to study distributed version control systems and emulate some 

of their qualities in the development of new tools for policymaking. If Toronto government 

officials were to study certain tools popularly used in the development of open source software, 

they could use them as models for creating new tools to support both policy development and 

complaint reporting.  

 To provide an overview of the paper, the idea of improving the fairness of policy 

development in Toronto through the creation of a distributed version control system will first be 

discussed. Secondly, the idea of improving efficiency by breaking down traditional hierarchies in 

Toronto city government will be discussed. Thirdly, the idea of improving both neighbourhood-

to-neighbourhood and neighbourhood-to-government communication will be discussed. Finally, 

the idea of improving public services through the creation of a bug tracking tool for complaint 

reporting will be discussed. 

 Canadians ought to care about these ideas because – if properly adopted – these new 

software development-inspired tools for policymaking and complaint reporting could very well 

help to improve the democracy of their society. As it is the “city of neighbourhoods,” (Kern, 

2005, p. 361) Toronto is an appropriate framework to use in this paper; however, these ideas are 

in no way exclusive to Toronto city government. These ideas may be applied to any municipal 

government that is struggling with similar issues. Despite the amalgamation of municipalities 

that occurred in 1998, (Gilbert, 2004, p. 248) Toronto city government must still deal with over 



Unifying the City of Neighbourhoods 
 

3 

 

240 distinct neighbourhoods that have their own individual concerns. A policy that one 

neighbourhood agrees with might be entirely counter to the interests of another neighbourhood, 

for instance. Additionally, residents must struggle to cut through a lot of bureaucratic red tape 

(Access Toronto, 2007, p. 2) in order to even get their policy opinions voiced on any kind of 

substantial level. In fact, the status quo of the Toronto municipal government may be likened to a 

centralized version control system such as Subversion for this very reason. In a Subversion open 

source project, a select few make the final decisions and all subordinate users must get their 

permission before any changes can be implemented. Programmer James Golick writes about 

Subversion, “anybody wishing to make changes to the source must first check out a working 

copy from version control, submit a patch, and hope that it is accepted.” (2008) Users who have 

been privileged with this level of control are called committers, and unless a less privileged user 

can convince a committer that their code is worthwhile, it may never see the light of day. It is in 

this sense that committers in Subversion are a lot like city councillors in Toronto. Residents in a 

neighbourhood must go to their area’s councillor and attempt to convince them – usually by 

speaking at a committee meeting – that their policy idea is worth considering. (Access Toronto, 

2007, p. 2) One problem with this model is that a few individuals get to decide what is best for 

the users and the residents. A more democratic model would no doubt allow the users and the 

residents to decide what is best for themselves. A distributed version control system such as Git 

would break down this hierarchy, (Google, 2007) thereby creating a more democratic 

environment.  With Git, there are no individually specified committers (ibid.) a user must go 

through in order to get their code integrated into the project. Rather, the community itself decides 

whose code gets integrated and whose code does not. A user no longer has to convince one very 

important person; rather, all they have to do is convince another user, and then another user, and 



Unifying the City of Neighbourhoods 
 

4 

 

so on, with the expectation that if the code is any good, it will become adopted into enough 

users’ repositories to be made very public and eventually integrated into the best version of the 

code, (Golick, 2008) wherever that may be in the system. Golick writes, “if the original author 

continues to maintain the best version of the code, great; if not, users of that code can begin to 

pull from whoever does have the best version.” (ibid.) A distributed version control system, then, 

eliminates the hierarchy present in centralized version control and allows more of the community 

rather than a set group of individuals to have a say in what gets implemented. Extending this 

concept to the domain of policy development, decisions could be made by the neighbourhood 

itself rather than the set group of city councillors. It is conceivable that a Git-like version control 

system be designed for the purpose of allowing citizens to publicize their policy ideas and any 

other concerns they may have relating to Toronto city government. Rather than writing code, 

though, neighbourhood residents would write documents that detail their policy concerns and 

submit their writing to the government’s distributed version control system. The documents 

could be provided to residents in standardized templates to help organize the writing. Like within 

Git, if just one other resident finds the policy idea worthwhile, they may adopt it into their policy 

repository, perhaps applying a few revisions of their own, and then another resident may do the 

same, and so on, until a chain reaction is created and the policy suggestion becomes so 

widespread throughout the community that it is impossible to ignore. After such a clear, 

objective indication of community interest has been made, it would be very difficult for city 

government to still not approve the policy. This is simply a fairer, more democratic means of 

going about policy development, as the residents within individual neighbourhoods would be 

able to collectively decide which policies get the most attention, as opposed to leaving this 

decision in the hands of government representatives with ambiguous motivations.  



Unifying the City of Neighbourhoods 
 

5 

 

 A distributed version control system for Toronto policy development would also increase 

the overall efficiency of the city government. Like the committers in an open source project with 

a centralized version control system, the city councillors are sometimes confronted with 

hundreds of suggestions in a short time frame. Naturally, when it is left up to a small number of 

people to examine each suggestion, it takes a long time to formulate a response, no matter how 

qualified those people are. In order to speed up the process, then, the unfortunate reality is that 

many potentially intelligent suggestions will simply be ignored under this hierarchical 

framework. A well-documented example of this phenomenon is when Linus Torvalds, the 

benevolent dictator (Fogel, 2009, p. 68) of Linux, could not keep up with all of the patches that 

were being submitted to him by contributors to the Linux kernel and was eventually suspected of 

flat-out ignoring many of the submissions. (McVoy, 1998) The solution was to incorporate a 

distributed version control system into the project, thus flattening the hierarchy and creating a 

“network of trust” (Google, 2007) around Torvalds so that the entire Linux community may 

contribute toward the vetting process and only the most worthwhile patches would reach him for 

ultimate approval. With residents continually contributing policies, a system similar to the 

network of trust could work for Toronto city government. Certain residents will eventually 

emerge as standout contributors, continually proposing policies that get widely accepted by their 

entire neighbourhood. In turn, the city councillors should have an easier time trusting the value 

of proposals from individuals who have emerged as standout contributors. In the hierarchical 

status quo of Toronto, it is entirely likely that policy suggestions will similarly fall by the 

wayside and be ignored, as expecting a few councillors to efficiently manage a city of millions 

who may be voicing their concerns at any given time is quite impractical. With a distributed 

version control system for policy development, however, the city of millions will be able to 



Unifying the City of Neighbourhoods 
 

6 

 

manage the city of millions, thereby increasing productivity and efficiency because more will get 

done at a faster rate, turnaround time will be quicker, and fewer suggestions will be ignored. 

Following Linus’ Law that “given enough eyeballs, all bugs are shallow,” (Raymond, 2000) the 

distributed version control system for policy development will provide Toronto city government 

with the opportunity to recognize which policies concern residents the most at any given time. 

 With a distributed version control system for policy development, communication may be 

enhanced not only between residents and city officials, but also between the residents 

themselves. This enhancement in communication may be facilitated through the branching 

capability that a distributed version control system such as Git provides. It is true that branching 

may also be done in a centralized version control system such as Subversion, but the frustrations 

associated with implementing this capability in Subversion are well-documented. (Collins-

Sussman et al., 2008, p. 84) It is much easier to implement branching, then, in a distributed 

version control system. The value of branching is that multiple lines of development may be 

maintained simultaneously on the same project. (ibid.) In a 2007 presentation at Google, 

Torvalds spoke about how with a distributed system an open source project may be neatly parsed 

out into separate units for users to work on. That is, one group of users may work exclusively on 

the established parts of the code, while another group of users may work exclusively on the more 

experimental parts of the code. (Google, 2007) In a distributed system, the expectation is that the 

changes that are made separately will eventually become merged together if indeed the changes 

are considered worthwhile by enough users in the community. There are many neighbourhoods 

within Toronto that share policy commonalities but also have their own individual concerns, and 

this is why a Git-like version control system for policymaking would enhance communication 

amongst residents in these various neighbourhoods. Policies that must be shared by all 



Unifying the City of Neighbourhoods 
 

7 

 

neighbourhoods may be included in the originating branch, e.g. Toronto-wide laws that have to 

be abided by under any circumstance. But from there, residents within various neighbourhoods 

may begin to create their own “policy repositories” based on this originating branch, adding their 

own policy concerns that relate to their specific neighbourhood. For instance, residents in the 

Chinatown neighbourhood may work on their repositories, adding their unique policy concerns 

for their area, while residents in the Forest Hill neighbourhood may work on their repositories, 

adding policy concerns that will no doubt be quite different from those submitted by people 

living in Chinatown. As the Chinatown residents’ repositories are communicated out to the 

Forest Hill residents’ repositories, policy conflicts may emerge. A policy requested by 

Chinatown residents might somehow directly or indirectly conflict with a policy requested by 

Forest Hill residents. This is where the branching of the distributed version control system 

facilitates communication between residents. Once the conflict is spotted, it will be left up to the 

residents to manually resolve or “merge” (Collins-Sussman et al., 2008, p. 90) the conflict 

themselves by talking and perhaps arriving at some sort of a compromise. Without a distributed 

version control system in place for policy development, then, this conflict between the 

communities may have remained hidden or emerged far later in the process, thus making it much 

harder to resolve. Additionally, the branching capability will allow for enhanced communication 

between the residents and the city councillors because once the residents think they have arrived 

at a possible solution, they will propose it to the city government for official implementation. 

The mere existence of an officially mandated distributed version control system will actually 

encourage residents to communicate with city government, and provide a more organized and 

efficient means for doing so. 



Unifying the City of Neighbourhoods 
 

8 

 

In order to fully understand how tools used in the development of open source software 

may be applied to Toronto city government, one must think about bugs as public problems, not 

merely technical problems. The notion of bugs as public problems may be applied to many of the 

public services offered in Toronto, such as public transportation. Commuters complain about the 

Toronto Transit Commission (TTC) on a regular basis, especially when it comes to the TTC’s 

subway service. (TTC Complaints) These complaints can be deemed “bugs” because they 

commonly represent legitimate problems with the particular public service. It has to be a key 

precept for the public to interact with the government promptly on these problems if they are 

ever going to get resolved, and a bug tracking tool for complaint reporting would no doubt 

facilitate this interaction. Simon Tatham, a programmer, discusses how to report bugs effectively 

in a seminal essay from 1999. He writes, “in a nutshell, the aim of a bug report is to enable the 

programmer to see the program failing in front of them… when you report a bug, you are doing 

so because you want the bug fixed.” Similarly, bug reporting for the TTC would enable 

employees to clearly see what the problems are, thereby positioning them to fix the bugs at a 

faster rate. A column published in the Toronto Star on April 8th, 2010 perfectly illustrates that a 

major problem with the TTC is this lack of a clear communication channel between TTC 

management and the public. It reads, “…a TTC spokesperson noted that labour and management 

have the same goal – crafting better relations with the public.” (Airing) The bug tracking tool 

could even be combined with the aforementioned distributed version control system in order to 

ameliorate potential issues of flooding. After a commuter submits their bug, the report may be 

fed into a distributed version control system. Here, the same vetting process that was outlined 

earlier for policy development may be applied. This system may be comprised of thousands of 

other concerned commuters. Any duplicate complaints that come into the system may be filtered 



Unifying the City of Neighbourhoods 
 

9 

 

through the users of this distributed system. The duplicate complaints could even be tallied in 

order to see how many commuters are complaining about the same issue, and this could perhaps 

go toward strengthening its importance in the system. Bugs that are seen as important by many 

users will become adopted into those users’ bug repositories, eventually accumulating into one 

democratically-constructed repository of bug reports that may be submitted to TTC management.   

The TTC is a great example of a public service with “bugs” because it is subsidized and 

ultimately controlled by Toronto city government. (Bolton, 2003) Tatham writes, “in bug reports, 

try to make very clear what are actual facts and what are speculations. Leave out speculations.” 

(1999) After the bugs are reported, they could become logged into a distributed version control 

system that would allow for the community to eliminate reports that appear to be mere 

speculations. “Standards, categories, technologies, and phenomenology are increasingly 

converging in large-scale information infrastructure…” (Bowker and Star, 1999, p. 47)  The TTC 

can be seen as this kind of large-scale information infrastructure that is increasingly dependent 

on technology for the improvement of their system. It seems only a natural step, then, to relate 

this infrastructure to the technological domain of open source software development tools. 

One specific tool for bug tracking that would serve as an appropriate model for Toronto 

city government is Bugzilla. The fifth chapter of the Bugzilla guide discusses the anatomy of a 

bug, the life cycle of a bug, searching for bugs and reporting them. (Bugzilla Team, 2010) If the 

government imposes a similar bug tracking tool on the TTC, issues will no doubt come to light 

more quickly. Even though Toronto city government essentially controls the TTC, (Bolton, 

2003) that does not mean government officials are currently aware of everything that citizens 

consider wrong with the system. If there were a conspicuous tool put in place akin to Bugzilla 

whereby each and every citizen could make their complaints heard, officials will more quickly 



Unifying the City of Neighbourhoods 
 

10 

 

become aware of the problems that need fixing. “[The internet is] a technology with the capacity 

to engage and enable interaction across geographies and boundaries, both physical and cultural, 

and to support initiatives from the ‘bottom up’ as well as the ‘top down.’” (Gurstein, 2003, p. 2) 

Similarly, in order to facilitate greater interaction between TTC management and the public, a 

“bottom up” initiative would allow commuters to submit their complaints through the bug 

tracking tool. The “top down” perspective would factor in later, as users of the distributed system 

would ultimately submit their developed complaint reports to management for approval. 

Consequently, with input from Simon Tatham and the Bugzilla guide, it is clear that bugs 

may not be seen merely as technical problems, but complaints from the public concerning the 

state of various government services. “Information is, by its essence, primarily a public good, 

and it is only by means of technology and aggressive regulatory control that its private nature can 

be made dominant.” (Gandy, 2002, p. 450) This means that the public should be made aware of 

the inner-workings of the system, and should be provided with the necessary technology to 

publicly critique the system. In this sense, a tool for bug tracking is integral to the survival of the 

system in place. Tatham writes, “tell them exactly what you did… wherever possible, you should 

provide a verbatim transcript of the session, showing what commands you typed and what the 

computer output in response.” The bug tracking tool for complaint reporting could be developed 

into hardware and installed on various subway station walls. Security could be built around the 

tool to prevent against vandalism. The hardware could provide the commuter with a clear 

interface and standardized process for going about reporting their bug. As the TTC system is 

currently, when a problem situation occurs, people often have no idea what to do and how to 

document it. A commuter will therefore have to find their own individual way of voicing a 

complaint, whether that be yelling at an employee or keeping quiet until they get home, then 



Unifying the City of Neighbourhoods 
 

11 

 

sending off an angry e-mail. However, if a specific tool similar to Bugzilla were noticeably put 

in place for complaint collection, a standardized process could then be publicized throughout the 

entire TTC on how to report complaints. When a grievance is issued, people would be more 

mindful of providing all the information necessary with a formal tool already in place to cater to 

their needs. Therefore, the creation of a complaint reporting tool that emulates the strict structure 

and process required for effectively using the bug tracking tool Bugzilla would no doubt benefit 

the government of Toronto, as it would help them to improve their public services. 

 As these creative suggestions have illustrated, Toronto city government would likely 

benefit from looking at domains that may on first glance seem entirely unrelated to government 

and thinking about how their processes could be appropriated. By creating a distributed version 

control system for policy development, fairness will be enhanced because the power of the city 

councillor role will become more evenly dispersed across residents in the neighbourhood. 

Efficiency will be enhanced because entire neighbourhoods will be working toward resolving 

problems, rather than smaller groups of city councillors. Communication will be enhanced 

between neighbourhoods because residents will now have a tool that actively encourages them to 

talk to each other in order to resolve conflicts. By creating a bug tracking tool for complaint 

reporting, consumers of public services will be able to voice their concerns in a more organized 

fashion, thus leading to faster improvement of these services. For these reasons, city officials 

should seriously consider how the appropriation of ideas from ostensibly unrelated domains may 

improve not only the state of Toronto government, but the city as a whole. 

 

 



Unifying the City of Neighbourhoods 
 

12 

 

REFERENCES 

Access Toronto. (2007). “Participate in your local government.” [PDF file]. City of Toronto, 
Public Information, Chief Corporate Office. 1-28. Available at http://www.toronto.ca 

“Airing TTC’s problems.” (2010, April 8). Toronto Star, p. A20. 

Bolton, Marilyn. (2003). “TTC vs federal government – Court date April 22, 2003.” Retrieved 
April 3, 2010, from http://transit.toronto.on.ca/archives/data/200304080840.shtml 

Bowker, G.C. & S. Star. (1999). Sorting Things Out: Classification and its Consequences. 
Cambridge, MA: MIT Press. 

Bugzilla Team. (2010). “The Bugzilla Guide – 3.5.3 Development Release.” [PDF file]. 1-113. 
Available at http://www.bugzilla.org/docs 

Collins-Sussman, B., B.W. Fitzpatrick, & C.M. Pilato. (2009). “Version Control with 
Subversion: For Subversion 1.6.” [PDF file]. Available at http://svnbook.red-bean.com 

Fogel, K. (2006). “Producing Open Source Software.” [PDF file]. O'Reilly Media. Available at 
http://producingoss.com 

Gandy Jr., O. (2002). “The Real Digital Divide: Citizens vs. Consumers.” In Lievrouw, L. & 
Livingstone, S. (Eds.), Handbook of New Media. London, UK: Sage. 448-60. 

Gilbert, L. (2004). “At the core and on the edge: justice discourses in metropolitan Toronto.” 
Space and Polity, 8(2), 245-60. 

 
Golick, James. (2008). “Why distributed version control matters to you, today.” Retrieved April 

3, 2010, from http://jamesgolick.com/2008/1/20/why-distributed-version-control-matters-
to-you-today.html 

 
Google. (2007). “Tech Talk: Linus Torvalds on git.” [Video file]. Video retrieved on April 3, 

2010, posted to http://www.youtube.com/watch?v=4XpnKHJAok8 

Gurstein, M. (2003). “Effective use: A community informatics strategy beyond the digital 
divide.” First Monday, 8(12).  

Kern, L. (2005). “In Place and At Home in the City: Connecting privilege, safety and belonging 
for women in Toronto.” Gender, Place & Culture, 12(3), 357-77. 

McVoy, Larry. (1998). “A solution for growing pains.” Retrieved April 3, 2010, from 
lkml.indiana.edu: http://lkml.indiana.edu/hypermail/linux/kernel/9809.3/0957.html 

Raymond, E. (2001). “The Cathedral and the Bazaar.” In The Cathedral and the Bazaar: 
musings on Linux and open source by an accidental revolutionary. Sebastopol: O'Reilly 



Unifying the City of Neighbourhoods 
 

13 

 

Media. Retrieved April 3, 2010, from http://catb.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar 

Tatham, S. (1999/2008) “How to Report Bugs Effectively.” Retrieved April 3, 2010, from 
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html 

TTC Complaints. (2010). “Welcome to TTC Complaints!” Retrieved April 3, 2010, from 
http://www.ttccomplaints.com 


